クローラの最大接地圧（解説）

弊社の行う「クローラの最大接地圧」は，J I S－A 8 4 0 1 に定める平均接地圧の計算とは異なり，偏荷重を考慮した計算です。ここでは本体は水平であり，クローラは剛体，荷重は静荷重であるという仮定で計算を行っています。特に機体が水平に保たれていないと，局部的な集中荷重を受けることが考えられます。機体は水平な場所に設置し，かつ，鉄板等による敷板を使用 し，地盤が沈下しないようにご注意下さい。

クローラの接地圧分布は，カウンタウェイト，リーダ，ブーム，作業装置などのすべてを含め た機体の重量，重心位置と足廻りのサイズによって算出されます。
（1）左右方向の分布
本体上廻りの方向とクローラの前後方向が同じでない場合は，機体の重心位置が本体下廻りの中心線上でないところにあります。図1に示すように，重心位置の偏心量を t ，左右クローラ間 の距離を s ，機体重量を M とすると，右側クローラの反力 F_{R} ，左側クローラの反力 F_{L} は，次式 で表されます。

$$
\binom{F_{R}=\frac{M}{s}\left(\frac{s}{2}-t\right)}{F_{L}=\frac{M}{s}\left(\frac{s}{2}+t\right)}
$$

（2）前後方向の分布
図 2 に示すように，重心位置の偏心量を r ，タンブラ間距離をL，シュー幅を w とし，接地反力の分布が一次関数であると仮定すると，右クローラ前端の接地圧 $P_{R F}$ ，後端の接地圧 $P_{R B}$ ，左 クローラ前端の接地圧 $P_{L F}$ ，後端の接地圧 $P_{L B}$ は次式で表されます。

$$
\left(\begin{array}{l}
\mathrm{P}_{\mathrm{RF}}=\frac{\mathrm{F}_{\mathrm{R}}(\mathrm{~L}+6 \mathrm{r})}{\mathrm{w} \cdot \mathrm{~L}^{2}} \\
\mathrm{P}_{\mathrm{RB}}=\frac{\mathrm{F}_{\mathrm{R}}(\mathrm{~L}-6 \mathrm{r})}{\mathrm{w} \cdot \mathrm{~L}^{2}} \\
\mathrm{P}_{\mathrm{LF}}=\frac{\mathrm{F}_{\mathrm{L}}(\mathrm{~L}+6 \mathrm{r})}{\mathrm{w} \cdot \mathrm{~L}^{2}} \\
\mathrm{P}_{\mathrm{LB}}=\frac{\mathrm{F}_{\mathrm{L}}(\mathrm{~L}-6 \mathrm{r})}{\mathrm{w} \cdot \mathrm{~L}^{2}}
\end{array}\right)
$$

〈図 2\rangle

ただしr＞$\frac{L}{6}$ の場合には，図 3 に示す三角形分布となり，$P_{R F}$ と $P_{R B}$ は

$$
\binom{\mathrm{P}_{\mathrm{RF}}=\frac{4 \mathrm{~F}_{\mathrm{R}}}{3 \mathrm{w}(\mathrm{~L}-2 \mathrm{r})}}{\mathrm{P}_{\mathrm{LF}}=\frac{4 \mathrm{~F}_{\mathrm{L}}}{3 \mathrm{w}(\mathrm{~L}-2 \mathrm{r})}}
$$

で表されます。

〈図 3\rangle

